Lab on a chip letpub

Abstract

Background

The nosocomial transmission of toxin-producing Clostridioides difficile is a significant concern in infection control. C. difficile, which resides in human intestines, poses a risk of transmission, especially when patients are in close contact with medical staff.

Methods

To investigate the nosocomial transmission of C. difficile in a single center, we analyzed the genetic relationships of the bacteria. This was done using draft whole-genome sequencing (WGS) and examining single nucleotide polymorphisms (SNPs) in core-genome, alongside data regarding the patient’s hospital wards and room changes. Our retrospective analysis covered 38 strains, each isolated from a different patient, between April 2014 and January 2015.

Results

We identified 38 strains that were divided into 11 sequence types (STs). ST81 was the most prevalent (n = 11), followed by ST183 (n = 10) and ST17 (n = 7). A cluster of strains that indicated suspected nosocomial transmission (SNT) was identified through SNP analysis. The draft WGS identified five clusters, with 16 of 38 s

Lab-on-a-chip

Device integrating laboratory functions on a integrated circuit

This article is about the technology. For the journal, see Lab on a Chip (journal).

A lab-on-a-chip (LOC) is a device that integrates one or several laboratory functions on a single integrated circuit (commonly called a "chip") of only millimeters to a few square centimeters to achieve automation and high-throughput screening.[1] LOCs can handle extremely small fluid volumes down to less than pico-liters. Lab-on-a-chip devices are a subset of microelectromechanical systems (MEMS) devices and sometimes called "micro total analysis systems" (μTAS). LOCs may use microfluidics, the physics, manipulation and study of minute amounts of fluids. However, strictly regarded "lab-on-a-chip" indicates generally the scaling of single or multiple lab processes down to chip-format, whereas "μTAS" is dedicated to the integration of the total sequence of lab processes to perform chemical analysis.

History

After the invention of microtechnology (≈1954) for realizing integrated semiconduct

ABSTRACT

Longitudinal studies of extraintestinal pathogenic Escherichia coli (ExPEC) and epidemic clones of E. coli in association with New Delhi metallo-β-lactamase (blaNDM) in septicaemic neonates are rare. This study captured the diversity of 80 E. coli isolates collected from septicaemic neonates in terms of antibiotic susceptibility, resistome, phylogroups, sequence types (ST), virulome, plasmids, and integron types over a decade (2009 to 2019). Most of the isolates were multidrug-resistant and, 44% of them were carbapenem-resistant, primarily due to blaNDM. NDM-1 was the sole NDM-variant present in conjugative IncFIA/FIB/FII replicons until 2013, and it was subsequently replaced by other variants, such as NDM-5/-7 found in IncX3/FII. A core genome analysis for blaNDM+ve isolates showed the heterogeneity of the isolates. Fifty percent of the infections were caused by isolates of phylogroups B2 (34%), D (11.25%), and F (4%), whereas the other half were caused by phylogroups A (25%), B1 (11.25%), and C (14%). The isolates were further distributed in appro

Copyright ©tubglen.pages.dev 2025