Sijue wu biography

Sijue Wu

Sijue Wu (chinois simplifié : 邬似珏 ; pinyin : Wū Sìjué) est une mathématicienne américaine d'origine chinoise née le . Elle occupe la chaire « Robert W. et Lynne H. Browne » de Mathématiques à l'Université du Michigan. Ses recherches portent sur l'analyse et les mathématiques des vagues, notamment les équations différentielles partielles non-linéaires de la dynamique des fluides[1],[2].

Formation et carrière

[modifier | modifier le code]

Wu obtient son baccalauréat en 1983 et sa maîtrise en 1986 à l'Université de Pékin[1],[2]. Elle obtient ensuite son doctorat en 1990 à l'Université Yale, sous la supervision de Ronald Coifman, avec une thèse intitulée Nonlinear Singular Integrals and Analytic Dependence[3]. Après une période temporaire d'enseignement à l'Université de New York, comme post-doctorante au Courant Institute of Mathematical Sciences, elle obtient un poste d' assistant professor à l'Université Northwestern. Elle part en 1996 pour l'Université de l'Iowa puis à l'Université du Maryland en 1998. Elle occupe ensu

Quick Info

Born
15 May 1964
Ningbo, China

Summary
Sijue Wu was born and brought up in China but went to the United States to study for her doctorate. She became Robert W and Lynne H Browne Professor of Mathematics at the University of Michigan. Her research involves the mathematics of water waves.

Biography

Sijue Wu's school and undergraduate education were in China. She studied at Beijing University, being awarded her first degree in 1983 and a Master's Degree in 1986. Even before the award of the Master's Degree, she had a paper published, namely Hilbert transforms for convex curves in Rn. She then went to the United States to undertake research. Her doctoral studies were undertaken at Yale University with Ronald Raphael Coifman as her thesis advisor. She submitted her thesis, Nonlinear Singular Integrals and Analytic Dependence, in 1990 and was awarded a Ph.D. She begins her introduction to her thesis as follows:-
This thesis is composed of three interrelated parts: w-Calderón-Zygmund operators, a wavelet characterization for weighted Hardy spaces, and

Sijue Wu

Nonlinear Singular Integrals and Analytic Dependence
Yale University, 1990

Introduction

This thesis is composed of three interrelated parts: ω-Calderón-Zygmond operators, a wavelet characterization for weighted Hardy spaces, and the analytic dependence of minimal surfaces on their boundaries.

In the first part of the thesis, we prove a T1 theorem and develop a version of the Calderón-Zygmund theory for ω-CZO when ω belongs to A. As an application, we use our results to indicate some estimates for fractional integrals.

In the second part of this thesis, we give a wavelet area integral characterization for weighted Hardy spaces Hp(ω), 0 < p < ∞, with ω in A. At the same time, our wavelet characterization establishes the identification between Hp(ω) and T2p(ω), the weighted discrete tent space, for 0 < p < ∞ and ω in A. This allows us to use all the results of tent spaces for weighted Hardy spaces. In particular, we obtain the isomorphism between Hp

Copyright ©tubglen.pages.dev 2025